Combining SVMs with Various Feature Selection Strategies

نویسندگان

  • Yi-Wei Chen
  • Chih-Jen Lin
چکیده

This article investigates the performance of combining support vector machines (SVM) and various feature selection strategies. Some of them are filtertype approaches: general feature selection methods independent of SVM, and some are wrapper-type methods: modifications of SVM which can be used to select features. We apply these strategies while participating at NIPS 2003 Feature Selection Challenge and rank third as a group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

¡ º ¬ º ³¢è Combining Svms with Various Feature Selection Strategies § Ï×ö Ø ¼ ¼ § Á¡°¼ Ö ÷ Ç Combining Svms with Various Feature Selection Strategies

Feature selection is an important issue in many research areas. There are some reasons for selecting important features such as reducing the learning time, improving the accuracy, etc. This thesis investigates the performance of combining support vector machines (SVM) and various feature selection strategies. The first part of the thesis mainly describes the existing feature selection methods a...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

Classification of Brain Glioma by Using SVMs Bagging with Feature Selection

The degree of malignancy in brain glioma needs to be assessed by MRI findings and clinical data before operations. There have been previous attempts to solve this problem by using fuzzy max-min neural networks and support vector machines (SVMs), while in this paper, a novel algorithm named PRIFEB is proposed by combining bagging of SVMs with embedded feature selection for its individuals. PRIFE...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Classification of Polarimetric SAR Images Based on Optimum SVMs Classifier Using Bees Algorithm

Because of Polarimetric Synthetic Aperture Radar (PolSAR) contains the different features which relate to the physical properties of the terrain in unique ways, polarimetric imagery provides an efficient tool for the classification of the complex geographical areas. Support Vector Machines (SVMs) are particularly attractive in the remote sensing field due to their ability to handle the nonlinea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005